Is There Extraterrestrial Life in the Universe?
Modifications to the Drake Equation.
In
Drake's Equation:
So given all these things, we can write
N = n × fp × H × fl × fi × ft
You can observe how the value of N is changed based on different assumptions at the highlighted link. But that prompted me to alter the question a bit and ask:
What if N = The number of technological civilizations in the galaxy that may communicate
with us. How would/should each of the terms be
modified?
n = The number of stars in the galaxy.
Yes, but...
n(e1) = Exclude those stars within the first 10% to 20% of their lifetime. Assume that
the planets around these stars have not sufficiently cooled and/or collected
the majority of the material tributary to their orbits...much
less achieved the conditions where life could flourish.
"e1" = 0.85.
n(e2) = Exclude stars older than 10 billion years. Stars like our sun will
become red giants and envelope the orbital region where life could exist.
Using a lifetime of 15 billion years, "e2" = 0.66.
n(e3) = Exclude those stars in regions of space that have been sanitized by
previous supernovas and/or cosmic ray burst from dying stars,
pulsars, etc. This
really depends on the size of the event and proximity to adjacent star systems.
If we are lucky, the axis of rotation of most stars is oriented at a
perpendicular to the galactic plane, so the gamma ray bursts are directed away
from the plane of the galaxy. Make your own guess for "e3" < 1.0.
fp = The fraction of stars that have planets.
I'm leaving this one alone for now. Until we can
accurately detect planets at a distance, it is just a guess.
ne = The fraction of planets that are capable of sustaining life.
Yes, and...
ne(e1) = Exclude planets that are either too close or too far away from the sun
to support the presence of liquid water. Also see (fl-a).
ne(e2) = Exclude planets without an iron core. In the absence of a
rotating iron core,
the planet lacks a magnetic field and is thus subject to the ravages of the
solar winds. The presence of sufficient iron to form a core depends on the
amount of previous star formation in that region of space.
Lord, this many conditions should surely whittle down this factor's magnitude.
ne(e3) = Exclude planets with insufficient iron in the core to maintain core
rotation based on their distance from their stars. This balance is further affected
by the total mass of the planet relative to core size.
ne(e4) = Exclude planets with excessive mass. High gravity forces will affect
the development of life as well as the environment.
fl = The fraction of planets that will develop life.
But consider...
Term #1 (fl-o) = The fraction of planets that develop life from scratch.
It's the old experiment of placing chemicals in a sealed container and
subjecting them to electrical discharge and primitive atmosphere...yielding
amino acids. Sounds like growth medium to me. Life is a little more complex than that. But for now,
an open mind.
or
Term #2 (fl-a) = The fraction of planets that acquire life (at the very least,
the building blocks for life) from the constituents of previous planets
that were destroyed in previous supernovas. Also see ne(e2).
Is life better explained in terms of propagation from an origin point
through the galaxy? Are sharp evolutionary changes the result of
the introduction of a superior biotic system? I prefer
this second term.
fl(e1) = Exclude planets with insufficient material diversity.
The life that is
present may exhaust the available materials before it can evolve.
What if one essential element is missing?
fl(e2) = Exclude planets with insufficient biological diversity.
One type of
organism will consume resources until exhaustion. Only diversity promotes selection and
therefore evolution (and later, intelligence).
fi = The fraction of the planets with intelligent life.
fi(f1) = The fraction of planets with terrestrial life. And only a small
proportion of terrestrial life develops technology.
fi(f2) = The fraction of planets with intelligent life and open social systems.
It might be argued that rigid or closed systems restrict the advancement of knowledge and thus technology.
Also see "L".
ft = The fraction of planets with intelligent life that develops technology.
ft(e1) = Exclude planets whose communication technology is species-specific,
e.g.
Chemical communication as from one ant to another.
ft(e2) = Exclude planets whose communication technology is species-limited, e.g.
Telepathy as between individuals who have no means of speaking or hearing (or
even seeing each other).
L = The fraction of the planet's lifetime during which "fc" life can communicate
with us.
L(e1) = Exclude all civilizations that have determined that off-world contact is
unwise.
L(e2) = Exclude all civilizations that do not want their presence noticed.
L(e3) = Exclude all civilizations that are sufficiently advanced so that they
find us uninteresting / too primitive.
L(e4) = Exclude all civilizations that are insufficiently advanced so that they
cannot understand what we are saying.
L(e5) = Exclude all civilizations that purposely mask their transmissions. Also
see L(e1) and L(e2).
L' = The fraction of our planet's
lifetime during which we are capable of communicating with "fc" life.
For discussion purposes, assume that L=L' and equally matched civilizations.
Use the ratio of 50 years to the age of our planet, then square that figure.
Talk about killing the odds.